Patient Safety in Older Adults

Scott Martin Vouri, PharmD, MSCI, BCPS, BCGP, FASCP
St. Louis College of Pharmacy

Faculty Disclosure

• Dr. Vouri is funded by the Washington University Institute of Clinical and Translational Sciences grants UL1 TR000448 and KL2 TR000450 from the National Center for Advancing Translational Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Learning Objectives

At the conclusion of this application-based activity, participants should be able to:

1. Develop and apply systems for the following:
 a) Medication reconciliation during transitions of care
 b) Identification of risk factors for Adverse Drug Event (ADE) or medication incidents/ errors.
 c) Prevention of ADE or medication incidents/ errors.
2. Recognize iatrogenic conditions (e.g., healthcare associated infections, falls, pressure ulcers, medication-induced conditions).
3. Develop strategies to prevent or resolve iatrogenic conditions.

Medication Epidemiology in Older Adults

- >50% of community dwelling older adults take 5 or more prescription medications, OTC medications, and dietary supplements
- 30% take 5 or more prescriptions medications (similar in Canada)
- 13% take 5 or more dietary supplements

- Number of medications increases with age

- ~50% of long-term care residents take 9 or more medications

http://www.statcan.gc.ca/pub/82-003-x/1014006/article/14032/00/hb17-eng.htm
Medication Reconciliation

1. Develop and apply systems for the following
 • Medication reconciliation during transitions of care

Medication Reconciliation

• The process of comparing a patient's medication orders to all of the medications that the patient has been taking.
• This reconciliation is done to avoid medication errors such as omissions, duplications, dosing errors, or drug interactions.
• It should be done at every transition of care in which new medications are ordered or existing orders are rewritten.
• Transitions in care include changes in setting, service, practitioner, or level of care.
Why is a ‘Med Rec’ Important?

- A ‘typical’ hospitalized patient is at risk for one medication error per day
- 40% of medication errors are thought to be a result of inadequate reconciliation
 - During admission, transfer, and discharge
- 20% of “Med Rec” errors are believed to result in harm.
- 25% of medications found at home were not included at hospital admission
- 50 – 60% of medication errors (at an outpatient clinic) were a result of patients taking medications that were not prescribed
- Discrepancies in medications occur in upwards of 80% of patients
- 50% of medication error related deaths or major injuries could be avoided with proper implementation of medication reconciliation

Med Rec During Transitions of Care

- Rationale
 - Increased vulnerability to environment changes
 - Increased stress and unfamiliarity
 - Multiple care providers in multiple settings
 - Often operate independently
- Associated Risks
 - Medical errors, service duplication, inappropriate care, medication discrepancies, “falling through the cracks”
 - Medication adherence often not taken into consideration
Active Learning

• Four Cases
• Divide in groups at your table
• One case per group
• Take 5 minutes to perform medication reconciliation

What’s Missing?

• Error of Omission
 • Patients’ (n=312) medication bottles were compared to the physician’s chart and noted 76% of patients, accounting for 545 medications, had discrepancies.
 • Of these, 278 medications (51%) were omissions where patients were taking medications that the physician did not have documentation.
 • In an evaluation of an outpatient clinic records over 3 months, 250 medications discrepancies were identified.
 • Of these, 58.8% (n=147) discrepancies were patients taking medications that was not on their medication list.

Review of Systems Subject

MR. ROSS (Medication Reconciliation - Review of Systems Subject)

<table>
<thead>
<tr>
<th>Medications</th>
<th>Brain: Headache / Migraine / Memory / Headache (OTC)</th>
<th>Hair: Medications / Shampoo</th>
<th>Nose: Nasal Sprays / PO allergy or discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach: Dyspepsia meds (OTC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal: Constipation / Diarrhea meds / Suppositories (OTC)</td>
<td></td>
<td>Elbow: Creams (rash / dry skin)</td>
<td></td>
</tr>
<tr>
<td>Elbow: Pain creams / PO pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot: Antifungal athlete’s foot (OTC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usual Care</th>
<th>Post-Usual Care – using MR ROSS</th>
<th>Total Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Medications – n (%)</td>
<td>424 (77.5)</td>
<td>123 (22.5)</td>
</tr>
<tr>
<td>Medication Type – n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prescription</td>
<td>308 (72.6)</td>
<td>33 (26.8)</td>
</tr>
<tr>
<td>Non – Prescription</td>
<td>116 (27.4)</td>
<td>90 (73.2)</td>
</tr>
<tr>
<td>Medication Schedule – n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduled</td>
<td>329 (77.6)</td>
<td>35 (28.5)</td>
</tr>
<tr>
<td>PRN</td>
<td>87 (20.5)</td>
<td>86 (69.9)</td>
</tr>
<tr>
<td>Short – Term</td>
<td>8 (1.9)</td>
<td>2 (1.5)</td>
</tr>
<tr>
<td>Route of Administration – n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>364 (85.8)</td>
<td>70 (56.9)</td>
</tr>
<tr>
<td>Oral Inhaler</td>
<td>18 (4.2)</td>
<td>11 (8.6)</td>
</tr>
<tr>
<td>Nasal Inhaler</td>
<td>3 (0.7)</td>
<td>5 (4.1)</td>
</tr>
<tr>
<td>Topical</td>
<td>10 (2.4)</td>
<td>21 (17.1)</td>
</tr>
<tr>
<td>Topical Patch</td>
<td>5 (1.2)</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>Subcutaneous</td>
<td>9 (2.1)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Ophthalmic</td>
<td>14 (3.3)</td>
<td>9 (7.3)</td>
</tr>
<tr>
<td>Otic</td>
<td>0 (0)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Rectal</td>
<td>1 (0.2)</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0)</td>
<td>1 (0.8)</td>
</tr>
</tbody>
</table>
Adverse Events

1. Develop and apply systems for the following
 • Identification of risk factors for Adverse Drug Event (ADE) or medication incidents/ errors.
 • Prevention of ADE or medication incidents/ errors.

Inappropriate Medications

• Identifying Inappropriate Medications → Drug-Induced Adverse Events (DIAE)

• Criteria
 • Drug Burden Index
 • Anticholinergic Scales
 • Beers’ Criteria
 • FORTA (Fit FOR The Age) Criteria
 • Screening Tool of Older Person’s Prescriptions (STOPP) Criteria
Inappropriate Medications and DIAE

- 47% of LTC residents had at least one inappropriate medication of which 13% had a documented adverse outcomes within one year
- Risk of adverse drug event was 2.3 times higher in residents with inappropriate medications
- Risk of hospitalization or death was 30% higher in residents with inappropriate medications
- In LTC, incidence of adverse drug events was 9.8 per 100 resident-months
- 42% deemed to be preventable
- Increase risk for adverse events, hospitalization, and death with inappropriate medications

Interventional Studies have assessed ways to improve medication prescribing in LTC setting
- Educational workshops for health-care team
- Educational sessions for caregivers
- Outreach advisory service
- Clinical decision support
- Medication feedback/review by pharmacists or multidisciplinary team

- Medication Appropriateness Index improved and number of medications reduced
- No improvements adverse events, hospitalizations, or mortality

References:
Rochon et al. UpToDate. 2014. Topic 3013.
Drug-Induced Adverse Events

- Adverse outcomes related to the utilization of a (prescription, OTC, or dietary supplement) medication
 - Outcomes most commonly related to mechanism of action of the medications
 - Outcomes may or may not be well-documented in the literature

- Factors which increases the risk for DIAE
 - Frailty
 - Coexisting Medical Problems
 - Memory Issues
 - Use of Multiple Prescribed and Non-Prescribed Medications

Limitations to Identifying DIAE

- Incomplete Medical Records
 - Thought process of a physician may not be in notes
 - Records may be filed away

- Patients’ inability to describe issues
 - Best way to identify DIAE is a patient complaint after starting a new medication
 - Complaints may not be documented / issues may lead to hospitalizations
Prescribing Cascade (PC)

- Occurs when a new (chronic) drug is prescribed to treat the symptoms arising from an unrecognized adverse drug event related to an existing medication
- To patients and providers, unrecognized adverse drug events thought to be due to ‘normal aging’ or misinterpreted as a new diagnosis common in older adults
- Factors which increases the risk for PC
 - Age
 - Multiple co-morbid conditions
 - Multiple drug therapies
DIAE – Prescribing Cascade

2. Recognize iatrogenic conditions (e.g., healthcare associated infections, falls, pressure ulcers, medication-induced conditions).
 - Understand the adverse effects of medications
 - Keep up with literature

PC Flow Diagram

New Medication ➔ New Symptom (not suspected to be DIAE) ➔ Notify Physician

Agrees New Symptom (not DIAE) ➔ Prescribes new medication to treat new symptom

Disagrees and identifies its DIAE ➔ Prescribes new medication for initial indication

Starts non-prescription medication
PC Flow Diagram Template

Drug A: ______________
Condition: ______________
Drug B: ______________

Other PC Considerations

- Acceptable PC
 - Standard of care dictates the treatment of one medication with another medication to prevent negative outcomes
 - (i.e., Furosemide → KCl)

- “Not quite” PC
 - Treatment of one medication (adverse outcomes) that requires short-term treatment or harms may occur (i.e., Broad Spectrum antibiotics causes C-Diff requiring vancomycin or metronidazole)
Confirmation of DIAE / PC

- Selected Bradford-Hill Criteria of Causation
 - Plausibility (DAIE or PC makes sense based on mechanism of action)
 - Temporal Relationship (Initial medication comes before DAIE or PC)
 - Dose-Response Relationship (higher dose = more DAIE or PC)
 - Consistency (confirmed in multiple previous trials)
 - Consideration of Alternative Explanations (Adverse outcome may be due to another cause)
 - Experiment (Reoccurs after withdrawal and re-challenge)

Examples of PC from Literature

- Prescription Sequence Symmetry Analysis (PSSA)
- Retrospective Medication Claims Cohort
PSSA Example

• ACEI-induced Cough
 • Assessing two medications claims (ACEI and antitussives) to identify DIAE or PC
 • Evaluates incident medication claims over a specific period of time
 • Assesses for symmetry of incident claims
 • Design controls for confounders like age, sex, disease, since it is within person acts like own control

PSSA Example

• Three possibilities
 • Antitussive after > Antitussive before
 • Prescribing Cascade / DIAE (ACEI claim → Cough → Antitussive claim)
 • Antitussive after = Antitussive before
 • No difference
 • Antitussive after < Antitussive before
 • Possible protective effect?
 • Claims for ACEI and Antitussive on same day are excluded
20% converted to ARB

Adherence (p<0.001)
 - Post ACEI anti-tussive – 52.4%
 - No Post ACEI antitussive – 75.5%

• Conclusion
 - Pts were 2.0 times more likely to have incident anti-tussive after ACEI compared to before ACEI
 - Adherence was poorer in anti-tussive after ACEI compared to anti-tussive before ACEI

• Limitations
 - OTC’s not included (under-reported use of cough-meds)
 - Does not include prevalent users
 - Unable to confirm symptoms from patients
Retrospective Medication Claims Cohort Example

A Prescribing Cascade Involving Cholinesterase Inhibitors and Anticholinergic Drugs

Drug A:
Cholinesterase Inhibitor (Treatment for Dementia)

Condition:
Increased Urination (thought to be related to aging or progression of dementia)

Drug B:
Anticholinergic Medication
(can block any potential benefit of cholinesterase inhibitors & contribute to worsening cognitive decline)

Diagnosis of Dementia per ICD-9 Codes or other Billing Records

- New-User Cholinesterase Inhibitor (Drug Cohort)
- Non-User Cholinesterase Inhibitor (Control Cohort)
- Time-to-Event

- Anticholinergic Medication
- No Anticholinergic Medication

Retrospective Medication Claims Cohort Example

<table>
<thead>
<tr>
<th></th>
<th>Cholinesterase Inhibitor Cohort HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted HR</td>
<td>1.66 (1.55 – 1.83)</td>
</tr>
<tr>
<td>Adjusted HR*</td>
<td>1.55 (1.39 – 1.72)</td>
</tr>
<tr>
<td>Subgroup – Long-Term Care Dwelling</td>
<td>1.94 (1.45 – 2.60)</td>
</tr>
<tr>
<td>Subgroup Community Dwelling</td>
<td>1.47 (1.31 – 1.64)</td>
</tr>
</tbody>
</table>

*Adjusted for: Age, sex, low-income status, residence in long-term care, medical condition (stroke, diabetes), Charlson Comorbidity Index, medications which impact normal bladder function

Retrospective Medication Claims Cohort Example

- **Conclusions**
 - Providers should consider the prescribing cascade model when evaluating the elderly (especially the temporal initiations of certain medications)
 - This is especially true in increased urination / incontinence after initiating cholinesterase inhibitors

- **Limitations**
 - Baseline differences between users and non-users
 - Unable to differentiate based on severity
 - Claims data does not confirm outcomes (i.e., increased urination) caused by cholinesterase inhibitor
DIAE – PC

3. Develop strategies to prevent or resolve iatrogenic conditions.

Strategies to Identify DIAE and PC

- Need to think like a detective
- In charts or through patient interview
 - Drug-Induced Adverse Event
 - Assess Past Medical History (PMH), Past “Review of Symptoms” (ROS), Past “Complaints” against the current medications
 - Prescribing Cascade
 - Assess PMH, Past ROS, Past “Complaints” against the previous and current medications
 - Also assess using Medication Appropriateness Index
Active Learning

GD is a 81 year old female present for 6 month follow-up after starting donepezil
- PMH: Hypertension, TIA, Gout, Osteoarthritis, Dementia
- Current Medications: Lisinopril/HCTZ, aspirin, allopurinol, APAP, donepezil 10mg daily
- Pharmacists calls community pharmacy to confirm adherence to donepezil and any changes in medications
- Confirmed adherence to donepezil
 - Noted ipratropium nasal and loratadine initiated ~4 months ago

What is the prescribing cascade?
Active Learning

- Work in groups with others at your table
 - Left of me (work on Cases 1)
 - Right to me (work on Cases 2)

- Work on for 5 minutes
 - Each case will be reported out

Patient-Level Interventions

Consider Donepezil + Ipratropium Nasal Prescribing Cascade

1. Identify potential prescribing cascade
 - Put on your detective hat!

2. Determine prescribing cascade is plausible (based on Mechanism of Action)
 - Donepezil (cholinesterase inhibitor) increase systematic acetylcholine which can contribute to rhinorrhea and thus the prescribing of Ipratropium

3. Confirm temporal relationship of prescribing cascade
 - Determine if donepezil came prior to ipratropium (or previous notation of rhinitis)
 - Determine donepezil was not stopped then ipratropium started
 - Determine a ‘sensible’ duration between drugs
Patient-Level Interventions

Prescribing Cascade Recommendation – no ‘correct answer’

• Option 1: D/C Drug B; reduce Drug A
 • D/C Ipratropium (likely not beneficial); reduce donepezil to 5mg daily

• Option 2: D/C Drug B; D/C Drug A and replace with alternate
 • D/C Ipratropium (likely not beneficial); d/c donepezil; consider alternative like rivastigmine patch

• Option 3: Reduce or D/C Drug A; assess reduction in condition/need for Drug B then D/C or reduce
 • D/C or reduce donepezil; assess reduction in rhinorrhea then D/C Ipratropium

Patient-Level Intervention

Recommendation to Physician

• Per chart, it appears ipratropium nasal (initiated 6/18/2015) may have been prescribed for the cholinergic adverse effects of donepezil (initiated 5/18/2015). No notation of previous allergic rhinitis symptoms or treatment. No noted benefit of rhinorrhea after initiation of ipratropium nasal.

• Recommend D/C ipratropium (no noted benefit) and reduce donepezil to 5mg PO daily (therapeutic dose); will reassess next month
Active Learning

- How would you intervene?
 - (i.e., how would you recommend to change, initiate, discontinue medication)

- How would you document this intervention?
 - (i.e., what would your note say?)

- Work in groups with others at your table
 - Left of me (work on Cases 1)
 - Right to me (work on Cases 2)

- Work on for 5 minutes
 - Each case will be reported out

Conclusion

- Having a complete/up-to-date medication list will allow you to critically evaluate medications
- “Inappropriate medications” associated with poor outcomes
 - However, interventions in reducing these does not reduce poor outcomes
- Understand typical adverse events and temporal trends of medications can help identify DIAE and PC