Designing Novel Olefin Polymers for Hot Melt Adhesive Applications

Gary R. Robe
Eastman Chemical Company
Principal Technical Representative
ASC Spring 2017 Technical Conference – April 3-5, 2017
Accelerating the movement of new product development from lab concept to commercialization

- Collaboration with value chain partners to understand unmet needs
 - Example: Hygiene nonwoven construction adhesives drivers
 - Lower application temperatures - wider application window
 - Greater mileage – higher peel with less add-on
 - Low odor

- Identify possible technology to meet needs
 - Novel polyolefin technology capable of producing previously unachievable properties
 - Lab scale experiments to identify new technology range

- Screening of candidate polymers to narrow focus
 - Develop lab-scale screening experiments to identify candidates
 - Compatibility testing with additives to determine breadth of component selections for tackifiers, waxes and oils
 - Designed experiments to identify prototype compositions

- Application testing to confirm performance
 - Pilot scale adhesive production, application tests and adhesive performance testing
 - Validation of processing and performance attributes on commercial scale equipment
Moving from concept to candidates

- New polymerization technology greatly expands the achievable product space
- Products with melt viscosities from 1,500 to 18,000 cps at 190 °C are possible
- Screening experiments suggest polymers with low RBSP and needle penetration are optimum for hygiene
- Target polymers have RBSP range of 120-130 °C, hardness of 20-30
- Scale-up 2 new polymers on low and high end of viscosity range for further testing
Tackifier compatibility with new polymers

- Hydrocarbon tackifiers with 2% or less aromaticity are most compatible with the polymers.
- Tackifiers with high molecular weight have reduced compatibility with the new polymers.
- \(T_g \) measurements are based on 1:1 blends of resin and tackifier.
- Basing compatibility on objective characteristics \(T_g \) and composition reduce dependence on subjective tests like cloudiness.
- Highly hydrogenated and fully aliphatic tackifiers are most compatible with the new olefin polymers.
Developing a prototype

- **Range of components**
 - New Polymer 2: 50-75%
 - Tackifier: 25-50%
 - Wax: 0-3%
 - Oil: 0-5%

- **Test for**
 - Minimum spray temperature
 - Spray pattern
 - 24-hr room temp. peel
 - 4-hr 38 °C peel
 - 30-day aged peel

- **Model for maximum peel and minimum spray temperature**
Analysis of experimental results

- Runs yielded peel results ranging from 80-160 grams/25 mm
 - Peel results above 120 grams/25 mm are favorable
 - Above 150 grams/25 mm peel substrate failure begins to dominate
 - Several high-peel formulas ran at 140 °C on lab equipment which indicates machinability at lower temperatures on full-speed lines

- Addition of oil to the formula was generally detrimental
 - Addition of even low levels of oil (1-2%) caused 20% loss of adhesion compared with similar formulas with only polymer, tackifier and wax
 - Using oil helped low temperature processing

- Two formulas identified with superior properties
 - 53% new polymer 2, 45% tackifier, 2% Fischer-Tropsch wax
 - 60% new polymer 2, 40% tackifier
 - High polymer content
 - Low tackifier demand
 - Simple formula – 3 components maximum
Confirmation on pilot-scale applicator at 130 °C

38% New polymer 1
45% tackifier
7% wax 10% oil

60% New polymer 2
40% tackifier

B-APO based adhesive

53% New polymer 2
45% tackifier
2% wax

M-PE based adhesive

SBS based adhesive

NO RUN
ADHESIVE NOT MELTED

NO RUN
ADHESIVE NOT MELTED
Spray patterns at 130 °C

- **38% New polymer 1**
 - 45% tackifier
 - 7% wax 10% oil

- **60% New polymer 2**
 - 40% tackifier

- **B-APO based adhesive**
 - NO RUN
 - ADHESIVE NOT MELTED

- **53% New polymer 2**
 - 45% tackifier
 - 2% wax

- **M-PE based adhesive**
 - NO PATTERN
 - NO RUN
 - ADHESIVE NOT MELTED

- **SBS based adhesive**
 - NO RUN
 - ADHESIVE NOT MELTED
Process window comparison

<table>
<thead>
<tr>
<th></th>
<th>SBC based commercial HMA</th>
<th>New Polymer 1 prototype HMA</th>
<th>b-APO based commercial HMA</th>
<th>mPE based commercial HMA</th>
<th>New Polymer 2 prototype HMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add-On</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gsm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summit 4 Hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At application Temperatures

- **SBC based commercial HMA**
- **New Polymer 1 prototype HMA**
- **b-APO based commercial HMA**
- **mPE based commercial HMA**
- **New Polymer 2 prototype HMA**

Commercial Rubber Based HMA Control

- Commercial Rubber Based HMA
- Commercial mPE Based HMA
- Commercial b-APO Based HMA
- Aerafin™ 180 based HMA
- Aerafin™ 17 based HMA

New Polymer

- New Polymer 1 prototype HMA
- New Polymer 2 prototype HMA

Summit 4 Hole

- Summit 4 Hole Continuous
- Summit 4 Hole Intermittent

Contact Slot

- Contact Slot Continuous
- Contact Slot Intermittent
Industry standard nozzle (continuous) at 400 m/min and 3 gsm add-on

Peel Strength at 140 °C Application Temperature

- New Polymer 1 based prototype
- New Polymer 2 based prototype
- Commercial mPE based HMA
- Commercial SBC based HMA

Peel Strength at 160 °C Application Temperature

- New Polymer 1 based prototype
- Commercial b-APO based HMA
- New Polymer 2 based prototype
- Commercial mPE based HMA
- Commercial SBC based HMA
Peel Strength for New Polymer 2, Butene-APO and Rubber-based HMAs
Spray Temperature of 150°C
Odor Panel Evaluation
Ranking 1 to 5; 1 being best

- Eastman Aerafin™ 17 Polymer
- mPE
- b-APO
- SEBS
- SIS

Evaluated using multiple observers and blind samples
Eastman new polymer 2 based HMA prototype

- Broad operating window
- Applicator flexibility

- Enables superior peel strength to SBC based:
 - Instantaneous peel strength
 - 24 hour peel strength
 - Body temperature peel strength
 - 2 week aged at elevated temperatures
 - One month aged peel strength

- Continues to offer low odor compared to SBC and B-APO
- 10 months from first lab experiment to pilot trials and customer introduction